
Ardumoto Kit Hookup Guide 




Introduction
The Ardumoto Shield is a dual-motor controller for Arduino. Combined with 
an Arduino, the Ardumoto makes a fantastic controller platform for RC 
vehicles or even small autonomous robots. It’s now easier to use, featuring 
control signal LEDs, while also being much more flexible for advanced 
users.

Ardumoto Shield assembled and situated on a RedBoard.

We sell the Ardumoto Shield either alone or with a set of motors and 
wheels in our Ardumoto Shield Kit. This kit includes the shield as well as 
pairs of tires, motors and connectors. And, of course, it’s all stuffed in a 
classic SparkFun red box (which may come in handy as a robot chassis).

Contents of the Ardumoto Shield Kit.

Covered in This Tutorial

This tutorial covers assembly and use of both the Ardumoto Shield and the 
Ardumoto Shield Kit. Digging deeper, we’ll get into some assembly tips and 
an example Arduino sketch. We will also present some additional resources 
that can help you get the most out of your board.

Page 1 of 17



Ardumoto V2.0 Wishlist SparkFun Wish List

This guide assumes you are familiar with the Arduino platform and can 
successfully compile and load a program to an ATmega328P based board, 
such as blink.ino.

Required Tools & Materials

To follow along with this tutorial, you’ll need an Ardumoto Shield or the 
Ardumoto Shield Kit, and an Arduino or Arduino-compatible development 
board.

Equipping the Ardumoto Shield (Non-Kit Version)

If all you have is the shield, you will also probably want a couple of DC 
motors to drive. The Ardumoto can control most small DC motors, like any 
of those in our DC motor category.

You’ll also need a handful of connectors to get everything wired up 
together. We recommend Stackable Headers to connect your Ardumoto to 
your Arduino, and two or three 3.5mm Screw Terminals to help connect 
motors to your Ardumoto.

To upgrade an Ardumoto Shield to a kit, add the following components:

9V to Barrel Jack Adapter 
PRT-09518

This simple cable has so many uses! Plug the 9 volt battery clip onto…

Arduino Stackable Header Kit 
PRT-10007

These headers are made to work with the Arduino Main Board, Ardui…

Wheel - 65mm (Rubber Tire, Pair) 
ROB-13259

These are a pair of basic, 65mm wheels with black rubber tires. Thes…

Arduino Uno - R3
 DEV-11021 

SparkFun RedBoard - 
Programmed with Arduino
 DEV-13975 

SparkFun Ardumoto Shield 
Kit
 KIT-14180 

SparkFun Ardumoto - Motor 
Driver Shield
 DEV-14129 

Page 2 of 17



(3) Screw Terminals 3.5mm Pitch (2-Pin) 
PRT-08084

Screw Terminals with 3.5mm pitch pins. Comes in 2 or 3 positions an…

Hobby Gearmotor - 200 RPM (Pair) 
ROB-13302

These are a pair of hobby gearmotors from DAGU. These gearmotors…

Powering the Shield

Both the shield and the kit will require a power source. Batteries are 
usually your best bet — we recommend a 9V alkaline battery, which will 
work perfectly with the included 9V-to-Barrel Jack Adapter.

Required Tools

Finally, you’ll also need a few tools, including a soldering iron, solder, wire 
strippers and a screwdriver:

Suggested Reading

The Ardumoto is a great platform for first-time motor users (and 
experienced ones too!). There are, however, a few concepts you should be 
familiar with before clicking over to the next few pages. Here are some 
tutorials we recommend reading first:

• Motors and Selecting the Right One — Learn all about motors before 
learning how to control them.

• Arduino Shields — This tutorial provides an overview of shields in 
general. It also contains an assembly guide for attaching headers to 
your shield.

• Pulse Width Modulation (PWM) — PWM is used to control the speed 
of our motors.

• How to Solder: Through Hole — To electrically secure the connectors 
and headers, you’ll need to solder them to your shield.

Soldering Iron - 30W (US, 
110V)
 TOL-09507 

Solder Lead Free - 15-gram 
Tube
 TOL-09163 

Pocket Screwdriver Set
 TOL-12891 

Page 3 of 17



• Voltage, Current, Resistance and Ohm’s Law — When we dive into 
the L298, it’ll be good to know the basics of voltage and current.

Meet the L298
At the heart of the Ardumoto — the big, black chip right in the middle — is 
an L298, one of our favorite dual-channel motor drivers around. On this 
page, we’ll give you some background information on the chip we’ll be 
depending on to drive our motors.

But First…Why a Motor Driver?

DC motors are the easiest motors to use. They’re dumb (they don’t provide 
feedback), but they’re good at spinning in one direction or the other when 
we tell them to. Unlike servos or steppers, DC motors don’t require any 
special signals — just a straight DC voltage. So why can’t we just connect 
them directly to the Arduino?

Well, motors tend to draw a lot of current, and trying to drive a motor 
straight from your Arduino output pins will make your Arduino quite cross 
with you. Wiring an Arduino straight to the motors will damage the 
microcontroller’s I/O pins due to the absolute maximum ratings. The 
Ardumoto lets you control a whole bunch of current (good for motors) safely 
with an itty-bitty signal (good for Arduinos). Everyone’s happy!

Here are some of the important features and specifications of the L298. 
These extend out to be the specifications of the Ardumoto as well:

Two Channels @ 2A Each

The L298 is a two-channel motor driver. That means it can individually 
drive up to two motors. So it’s perfect for a two-wheel-drive vehicle. But if 
you have a special four-wheel-drive platform, you might need something 
else (or just two L298s).

Each channel on the L298 can deliver up to 2A to the motor to which it’s 
connected. Keep in mind, though, that the amount of current available to 
your motor also depends on your system’s power source. Batteries are 
great power sources because they’re mobile and can discharge a lot of 
current. However, high current draw also means they’ll drain faster.

The Control Signals

Controlling the L298 is very easy. If you’ve ever blinked or dimmed an LED, 
you already have all the tools necessary to control the L298.

• All of the control signals are limited to a maximum of 7V, which is 
great because our Arduino is only going to supply a maximum of 5V.

• For each of the L298’s channels, there are two types of input we 
need to send to drive a motor: direction and enable. Each of these 
inputs are Boolean — either high or low.

• Using the direction inputs, we can control whether the motor spins 
clockwise or counterclockwise. The L298 actually has two direction 
inputs for each channel. However, we’ve merged those two inputs 
into one on the Ardumoto, as we’ll show in the next section.

• The enable input can be driven either high or low to make the motor 
spin or stop. But, with Pulse Width Modulation (PWM), we can 
actually use this input to control the speed of our motor. Just as it 
can be used to dim LEDs, PWM is perfect for controlling how fast our 
DC motor spins.

Page 4 of 17



That covers the basics of the L298. If you’re curious, or want to know more 
about the chip, checking out the datasheet is a good place to start.

Ardumoto Overview
Before you get your soldering iron out, or start attaching motors, it’d be best 
if we briefly covered the basics of the Ardumoto Shield. On this page, we’ll 
highlight the important inputs and outputs of the shield, so you can get a 
better idea of how you want to assemble it later.

Pins and Connectors

Here’s an annotated view of the shield, highlighting the important pins and 
components:

The top side of the Ardumoto

The bottom side of the Ardumoto and jumpers

Each motor uses two pins: the digital output for direction and the PWM for 
speed. The factory configuration uses Arduino pins 2, 3, 4 and 11. The 
alternate configuration uses pins 7, 8, 9 and 10. If the alternate pins are 
needed, you’ll have to cut the copper links on the bottom and apply solder 
to bridge to the other selection where necessary. For this guide, just leave 
everything in the default positions.

If the shield is used on a 3.3V Arduino (such as the Arduino Pro 328 -
3.3V/8MHz), chances are there’s no 5V supply, so you’ll have to move the 
VCCIO jumper to the 3.3V side. This jumper selects the voltage for the 
L298’s logic. If you’re using an Uno, or 5V 328p of another variety, leave 
this in the default position.

This table describes the pin function for each configuration.

Default 
Pin

Alternate 
Pin

Ardumoto 
Shield Pin 
Label

Notes

Page 5 of 17



2 8 DIR A A digital signal to control the 
rotation direction of motor A 
(e.g., HIGH drives current 
from output 4 to 3).

3 9 PWM A A PWM signal to control the 
speed of motor B. 0=off, 
255=max speed.

4 7 DIR B A digital signal to control the 
rotation direction of motor A 
(e.g., HIGH drives current 
from output 2 to 1).

11 10 PWM B A PWM signal to control the 
speed of motor B. 0=off, 
255=max speed.

While the Ardumoto Shield is attached to an Arduino, the used pins 
shouldn’t be connected to anything else.

Motor Outputs

Both of the L298’s motor driver outputs are broken out to the edge of the 
shield. These 2-pin outputs are broken out to two footprints: a 3.5mm-pitch 
screw terminal and a 0.1"-pitch header. You can use either to wire up your 
motor, but screw terminals make life much easier if you need to disconnect 
your motor. The L298 is perfect for building simple two-wheel-drive robot 
platforms — connect one motor to port A and the other motor to port B.

Technically, there is no right or wrong way to connect your motor’s wires to 
the two output pins, but to help keep things straight, we suggest connecting 
the red / black wire for each motor to pins 1 / 2 on port A and pins 3 / 4 on 
port B, respectively.

The right and left motors of a robot spin different directions with the same 
polarity drive because of the orientation. If you want to keep DIR 
consistently moving that side of the bot “forward,” you may end up 
swapping either the motor leads of one side or the logic in the code, but not 
both. Play around with the leads of the motors on their respective sides and 
watch the indicator LEDs to see the effect.

LED Indicators

Next to each of the motor outputs is a pair of blue and yellow LEDs, which 
indicate the direction your motor is spinning. These are great once you 
get to debugging your project. They’re also useful if you want to test your 
sketch without wiring up any motors.

Page 6 of 17



There are also four red LEDs (PWMA, DIRA, PWMB, DIRB) that are wired 
to the control lines directly, showing what your code is doing and also if the 
pins are configured correctly.

The control signals are connected to LEDs on this revision so you can see 
what your program is doing! In this photo, DIRA is illuminated (meaning the 

direction is reversed), and PWMA is half-illuminated, indicating that the 
signal is being pulse width modulated.

When the DIR LED of a side is illuminated, the driver will allow current from 
pin 2 to 1, and the blue LED will be lit. Alternately, the yellow LEDs will be 
lit. With a motor connected, the inductive effects can cause the opposite 
drive LED to illuminate slightly; this is OK. The blue and yellow LEDs are 
there to help show what the actual outputs of the driver are doing. Use the 
red LEDs to debug your code.

LEDs in operation

Supply Voltage

The Ardumoto Shield should be powered through one of two power supply 
inputs. Pick one or the other:

1. The barrel jack input on the Arduino.
2. The V input on the shield

If you don’t want to use the Arduino’s barrel jack input, you can use the V
input on the shield instead. This voltage input will supply both the shield 
and the Arduino. Like the motor outputs, this connection is broken out to 
both a 3.5mm screw terminal and a 0.1"-pitch header.

Do not supply power to both the Arduino barrel jack input and V on the 
shield! Doing this will cause current to flow from one power supply to the 
other if the voltages are not identical.

Spec'ing a Power Supply

Because V powers both your Arduino and your motors, you need to take 
extra care in deciding what you’ll use to power your Arduino/Ardumoto 
combo. Not only does V have to fall within the acceptable range of your 
Arduino (usually 6–15V), but it also has to meet the specifications of your 
motor.

IN

IN

IN

IN

IN

Page 7 of 17



Check the voltage and current requirements of your motor before 
deciding how to power your Ardumoto project. These specifications vary. 
The 65 RPM Hobby Gearmotors, for example, have a recommended range 
of 3–6V, but can be safely powered at up to 9V.

We recommend 9V alkaline batteries as an easy, if not very sustainable, 
option. Dual-cell LiPo battery packs (7.4V nominal, 1,000mAh capacity) are 
also a good option if you’re looking for something mobile. A 9V wall wart
can work if your project is stationary. For more help picking a power supply, 
check out our How to Power a Project tutorial.

Ardumoto Shield Assembly Tips
Before you can start using the Ardumoto Shield, you have to do a little 
assembly. Embrace your inner electronics technician and whip out that 
soldering iron! Time to turn a mish-mash of parts into a fully functional 
‘duino shield!

Parts laid out, ready to assemble

On this page we’ll go over some assembly tips. You don’t have to follow 
these steps exactly (assemble the shield as best fits your project’s needs), 
but this is good for general use of the shield.

Add Screw Terminals (Optional)

If you please, you can add screw terminals to both of the motor outputs
and/or the V input.

If you’re adding screw terminals to the motor outputs, slide them together 
first:

Then insert them into the shield and solder.

IN

Page 8 of 17



Soldering in the screw terminals

Solder the Arduino Headers

To interface the shield with your Arduino, soldering male connectors to the 
28 header pins is a must. Soldering ensures a reliable physical and 
electrical connection. If you’ve never soldered before, check out our 
through-hole soldering tutorial.

There are usually two options for connectors when you’re assembling a 
shield: stackable or straight. We recommend stackable headers because 
they allow you to stack other shields or jumper wires on top. The smaller 
male headers are a good option if you’re looking for lower-profile 
installation.

If this is your first shield assembly, we recommend reading through our 
shield assembly guide. There are all sorts of tricks to installing shield 
headers, and making them look as good and straight as possible!

There are too many holes! The stackable header kit includes two 
6-position, and two 8-position headers. These go in the rows of pins 
toward the outside edge of the board. Also, both 6-positions go on the 
same side, and the 8-positions go on the other. There will be two extra 
unused pins on each side, toward the motor connection.

In the process of soldering stackable headers. Still a lot of pins to go!

Once you’re done soldering the headers, plug the shield in to make sure 
everything fits nice and cozy.

Page 9 of 17



Assembled shield on a RedBoard/Arduino

Prototyping Area

Let’s address the elephant in the room. There’s almost half a shield that 
we’ve failed to talk about thus far: the prototyping area! These rows and 
columns of 0.1"-spaced plated through-holes can be used to solder in all 
sorts of fun components.

Near the proto area is a set of six pins. With the isolation jumpers opened 
underneath, these allow you to interface directly to the inputs of the L298.

The six pins of the ISP connector are outlined within the proto area. These 
are just plated through holes, and are labeled to warn you that the pins 
underneath come up really close. If you absolutely need these, you may 
end up removing the ISP header from the attached Arduino.

Here are some ideas of what to do with it:

• Leave it alone! — If you’re happy with just driving motors, you’re 
good to go.

• Add an accelerometer to enable bump detection in your robot.
• Fill it with LEDs to make your project as blinky as possible.
• Add current sense resistors, an op-amp, and measure the current of 

the motors being driven.
• Disconnect all the jumpers and wire up the L298 in any way you 

please.

Unlike other prototyping areas you may have encountered in the past, 
these holes are not wired together. You don’t need to do any trace-slicing, 
but you will need to do some soldering and wire routing.

Motor and Wheel Assembly
This is where the shield assembly gets very project-specific. Have you 
picked out which motors you’ll be driving with the shield? Do you know how 
long the wires need to be trimmed? There’s a lot to be answered here 
before continuing on…

Motor Wiring

If you have the kit, the motors come with wires attached, but take the time 
to notice how they are wired. They are a left-right pair, which can be seen 
by holding the motors in the same orientation and looking at how the red 
and black wires are attached. When they are installed with the wire-side 
facing each other, a positive polarity drives either motor “forward,” even 
though one is spinning clockwise while the other spins counterclockwise.

Connecting Motors

If you added screw terminals in the last step, break out your screwdriver, 
slide the wires in, and tighten the terminals down.

In lieu of screw terminals, you can solder the motor wires into either the 0.1" 

Page 10 of 17



header or the screw terminal header.

The basic orientation of the motors, wires and connections to build a robot. 
In this configuration, the drive LEDs will make sense, and operations on the 

control signals will generate similar movement from side to side.

If you’ve got the kit, install one motor’s red to output ‘1’, and black to output 
‘2’. Install the other motor’s red to output ‘3’, and black to output ‘4’.

Upcycling the SparkFun Box

If you have the Ardumoto Shield Kit, you probably also have a robust, 
resplendently red SparkFun box. These SparkFun boxes come in handy for 
all sorts of projects — including robot chassis!

With some measured hobby knife incisions, you can cut out some mounts 
for the motors and tie your Arduino/shield combo down as well:

This shape of robot relies mostly on balance, and slides across the floor. If 
driving on carpet, slick clear tape can be added to the corners to prevent 
catching.

Example Code
Controlling the Ardumoto Shield is super easy. If you can blink LEDs, you 
can make the Ardumoto Shield spin its motors. Here, we’ll provide a simple, 
expandable example sketch to show how to drive the pair of motors on the 
Ardumoto.

Note: This example assumes you are using the latest version of the 
Arduino IDE on your desktop. If this is your first time using Arduino, 
please read our tutorial on installing Arduino IDE.
If you have not previously installed an Arduino library, please check 
out our installation guide.

The Example Sketch

Download the example sketch and upload it to your board.

ARDUMOTO SHIELD EXAMPLE DIRECT LINK

Page 11 of 17

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text
https://raw.githubusercontent.com/sparkfun/Ardumoto-Motor_Driver_Shield/revision/Firmware/hw20ExampleCode/hw20ExampleCode.ino

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text



/* Ardumoto Example Sketch
  by: Jim Lindblom 
  date: November 8, 2013 
  license: Public domain. Please use, reuse, and modify this  
  sketch! 

  Adapted to v20 hardware by: Marshall Taylor 
  date: March 31, 2017 

  Three useful functions are defined: 
    setupArdumoto()  Setup the Ardumoto Shield pins 
    driveArdumoto([motor], [direction], [speed])  Drive [mot
or]  
      (0 for A, 1 for B) in [direction] (0 or 1) at a [speed] 
      between 0 and 255. It will spin until told to stop. 
    stopArdumoto([motor])  Stop driving [motor] (0 or 1). 

  setupArdumoto() is called in the setup(). 
  The loop() demonstrates use of the motor driving functions. 
*/

// Clockwise and counterclockwise definitions.
// Depending on how you wired your motors, you may need to swa
p.
#define FORWARD  0
#define REVERSE 1

// Motor definitions to make life easier:
#define MOTOR_A 0
#define MOTOR_B 1

// Pin Assignments //
//Default pins:
#define DIRA 2 // Direction control for motor A
#define PWMA 3  // PWM control (speed) for motor A
#define DIRB 4 // Direction control for motor B
#define PWMB 11 // PWM control (speed) for motor B

////Alternate pins:
//#define DIRA 8 // Direction control for motor A
//#define PWMA 9 // PWM control (speed) for motor A
//#define DIRB 7 // Direction control for motor B
//#define PWMB 10 // PWM control (speed) for motor B

void setup()
{ 
setupArdumoto(); // Set all pins as outputs

} 

void loop()
{ 
// Drive motor A (and only motor A) at various speeds, then 

stop.
driveArdumoto(MOTOR_A, REVERSE, 255); // Set motor A to REVE

RSE at max
delay(1000);  // Motor A will spin as set for 1 second
driveArdumoto(MOTOR_A, FORWARD, 127);  // Set motor A to FOR

WARD at half
delay(1000);  // Motor A will keep trucking for 1 second 
stopArdumoto(MOTOR_A);  // STOP motor A 

// Drive motor B (and only motor B) at various speeds, then 
stop.

Page 12 of 17



driveArdumoto(MOTOR_B, REVERSE, 255); // Set motor B to REVE
RSE at max
delay(1000);  // Motor B will spin as set for 1 second
driveArdumoto(MOTOR_B, FORWARD, 127);  // Set motor B to FOR

WARD at half
delay(1000);  // Motor B will keep trucking for 1 second
stopArdumoto(MOTOR_B);  // STOP motor B 

// Drive both
driveArdumoto(MOTOR_A, FORWARD, 255);  // Motor A at max spe

ed.
driveArdumoto(MOTOR_B, FORWARD, 255);  // Motor B at max spe

ed.
delay(1000);  // Drive forward for a second
// Now go backwards at half that speed:
driveArdumoto(MOTOR_A, REVERSE, 127);  // Motor A at max spe

ed.
driveArdumoto(MOTOR_B, REVERSE, 127);  // Motor B at max spe

ed.
delay(1000);  // Drive forward for a second

// Now spin in place!
driveArdumoto(MOTOR_A, FORWARD, 255);  // Motor A at max spe

ed.
driveArdumoto(MOTOR_B, REVERSE, 255);  // Motor B at max spe

ed.
delay(2000);  // Drive forward for a second
stopArdumoto(MOTOR_A);  // STOP motor A 
stopArdumoto(MOTOR_B);  // STOP motor B 

} 

// driveArdumoto drives 'motor' in 'dir' direction at 'spd' sp
eed
void driveArdumoto(byte motor, byte dir, byte spd)
{ 
if (motor == MOTOR_A)

  { 
digitalWrite(DIRA, dir);
analogWrite(PWMA, spd);

  } 
else if (motor == MOTOR_B)

  { 
digitalWrite(DIRB, dir);
analogWrite(PWMB, spd);

  }   
} 

// stopArdumoto makes a motor stop
void stopArdumoto(byte motor)
{ 
driveArdumoto(motor, 0, 0);

} 

// setupArdumoto initialize all pins
void setupArdumoto()
{ 
// All pins should be setup as outputs:
pinMode(PWMA, OUTPUT);
pinMode(PWMB, OUTPUT);
pinMode(DIRA, OUTPUT);
pinMode(DIRB, OUTPUT);

// Initialize all pins as low:
digitalWrite(PWMA, LOW);

Page 13 of 17



digitalWrite(PWMB, LOW);
digitalWrite(DIRA, LOW);
digitalWrite(DIRB, LOW);

} 

Then upload to your Arduino and watch your motors spin! If you want to dig 
really deep into the sketch, check out the comments.

Explaining the Sketch

For each motor there are two mechanisms we can control — the direction
of rotation and the speed. Each of those mechanisms is controlled by one 
pin on the Arduino.

Controlling Rotation Direction

We can only spin the motor in two directions — clockwise or 
counterclockwise — so we only need two values — 0 or 1 — to control that 
from the Arduino. We can simply digitalWrite either of the direction pins 
(pin 12 for motor A, pin 13 for motor B) HIGH or LOW to go forward or 
backward.

For example, if you want motor A to spin clockwise, you simply need to 
digitalWrite pin 12 LOW :

digitalWrite(12, LOW);  // Motor A will spin clockwise

To make it spin the other way, write the pin HIGH .

digitalWrite(12, HIGH);  // Motor A will spin counterclockwis
e

(Note: The rotation direction depends on how you wired the motor to your 
shield. If you swapped the red and black wires, the motor will spin opposite 
of how we’ve described it here.)

Speeding

To control the speed of a motor we need to analogWrite to the PWM pins 
(pin 3 for motor A, pin 11 for motor B). A higher analogWrite value means 
a faster spin. Writing the pin LOW (or 0) will stop the motor.

PWM Value Motor Spin Speed

0 Off (Stop)

127 Half Speed

255 Full Speed

If we want to turn motor A up to maximum speed, this is all we need:

analogWrite(3, 255);  // Motor A at max speed

After that line of code is executed, the motor will spin until stopped. To 
stop the motor, replace 255 with 0:

analogWrite(3, 0);  // Stop motor A

Don’t forget to set your direction before spinning your motor!

Resources and Going Further

Page 14 of 17



The Ardumoto has been designed primarily to be a motor driver, but we’ve 
taken extra time to make sure the L298 IC can be fully controlled, given the 
user understands the way it works. The datasheet contains a schematic 
diagram of the internal functions of the IC, which is the first thing to look at 
and contemplate before trying to do wacky things with your Ardumoto.

A block diagram of the L298 internals from the L298 datasheet

As can be seen from the block diagram, the L298 is actually four totem 
drives with two common grounds, intended for full-bridge motor-driving 
applications.

A section of the Ardumoto Schematic

To make the Ardumoto, we’ve connected the pairs with one of each 
inverted, to allow a direction control. The enable pin is then PWM’d such 
that the output goes between drive enabled and high impedance. This 
allows coasting of the motors when not driven.

Another way the motors could have been hooked up is to PWM the input 
pins and keep enable high. This would provide motor resistance against 
movement when not under power, and a PWM value of ½ would be “off.”

Advanced Pins and Connections

The other jumpers and pins are for flexible configuration. They allow the 
L298 to be completely isolated from the control lines so that it may be 
connected in very specific ways, but it’s up to you to figure out how to solve 
the engineering problems you’ll face.

The top side of the Ardumoto

Page 15 of 17



The bottom side of the Ardumoto and jumpers

The A/B Isolate jumpers and the A/B inputs work together. If the ‘ISOLATE’ 
jumpers are all opened, and the ‘SELECT’ pins are all opened, the inputs to 
the L298 are not connected to anything but the six input pins by the proto 
area. They can then be used however the designer wishes in conjuction 
with the proto area.

The other curious feature is the pairs of pins labeled ‘SENSE’. If you look 
closely, you’ll notice each pair is shorted together, and connected to 
ground. It is possible to detect current through each motor by cutting the 
jumper between these pins, supplying a low-ohm resistor and measuring 
the voltage across it. Not for the faint of heart.

Possible uses:

• Current sense — break the current sense link between through-holes 
and insert a 0.05 or 0.1 ohm resistor. Then, use an op-amp to amplify 
the voltage across the resistor to measure current with an ADC.

• Four independent totem drive circuits using both timer one and timer 
two.

• Non-coasting drive configuration.
• Bridging output (and control lines) for 4A single drive — add a 

heatsink with thermal tape!

Resources

• Ardumoto Shield Schematic — A PDF of the shield’s schematic.
• Ardumoto Shield Github Repository — The design files and 

examples.
• L298 Data Sheet — Everything you could ever want to know about 

the L298 dual-motor driver.
• Secrets of Arduino PWM – Gives a good description of low-level 

timer usage.
• Example Using TimerOne — This example included with the product 

repo shows using the motor driver with the TimerOne library.

Going Further

• HUB-ee Buggy Project — Build your own buggy using an Ardumoto 
shield.

• Assembly Guide for RedBot — If you’re looking for a complete, 
beginner-level robotics platform, check out the RedBot Kit. It’s 
Arduino-compatible, and the RedBot Mainboard has a motor driver 
built into it, so you don’t even need an Ardumoto Shield.

• Getting Started with the MiniMoto — The MiniMoto is a more 
advanced, digitally controlled, low-voltage DC motor driver. Great if 
you need a smaller form-factor motor controller.

• How to Power a Project — Batteries? Wall warts? Solar? If you’re not 
sure how to power your Ardumoto Shield project, take a trip over to 
this tutorial.

Page 16 of 17



How to Power a Project
A tutorial to help figure out the 
power requirements of your project. 

MiniMoto DRV8830 Hookup 
Guide
MiniMoto is an I2C-based low-
voltage DC motor driver. 

Assembly Guide for RedBot 
with Shadow Chassis
Assembly Guide for the RedBot Kit. 
This tutorial includes extra parts to 
follow to go along with the RedBot 
Inventor's Kit tutorial. 

Page 17 of 17

4/18/2017https://learn.sparkfun.com/tutorials/ardumoto-kit-hookup-guide?_ga=1.258788746.106461...




